Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Superconducting gap of MgB₂ observed using ultra-high resolution photoemission spectroscopy

Shunsuke Tsuda¹, Takayuki Kiss¹, Takayoshi Yokoya¹, Ashish Chainani¹², Shik Shin^{1,3}, Yoshihiko Takano⁴

- ¹ Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- ² Institute for Plasma Research, Bhat, Gandhinagar-382 428,India
- ³ The Institute of Physical and Chemical Research (RIKEN), Sayo-gun, Hyogo 679-5143, Japan
- ⁴ National Research Institute for Metals, 1-2-1 Sengen, Tsukuba 305-0047, Japan

Recently, Akimitsu et al. discovered that MgB_2 shows superconductivity below 39 K 1 . This discovery is surprising because of its high transition temperature occurring in a simple binary compound and has been stimulating further experimental and theoretical studies to understand the mechanism of superconductivity.

In this paper, we show ultrahigh-resolution photoemission results of MgB_2 . Photoemission spectrum measured at 45K shows a Fermi edge whose reading edge midpoint locates at the Fermi level. In contrast, the spectrum measured at 5.3 K shows a clear superconducting quasiparticle peak at $\sim\!8$ meV and a shift of reading edge, indicating opening of a superconducting gap. We will discuss the value of superconducting gap and its temperature dependence.

¹J.Nagamatsu et al. Nature **410**, 63 (2001).